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Vertex cover is one of the classical NP-complete problems in theoretical computer science. A vertex cover of
a graph is a subset of vertices such that for each edge at least one of the two endpoints is contained in the
subset. When studied on Erdds-Rényi random grépfth connectivityc) one observes a threshold behavior:
In the thermodynamic limit the size of the minimal vertex cover is independent of the specific graph. Recent
analytical studies show that on the phase boundary, for small connectigities the system is replica
symmetric, while for larger connectivities replica symmetry breaking occurs. This change coincides with a
change of the typical running time of algorithms from polynomial to exponential. To understand the reasons for
this behavior and to compare with the analytical results, we numerically analyze the structure of the solution
landscape. For this purpose, we have also developed an algorithm, which allows the calculation of the back-
bone, without the need to enumerate all solutions. We study exact solutions found with a branch-and-bound
algorithm as well as configurations obtained via a Monte Carlo simulation. We analyze the cluster structure of
the solution landscape by direct clustering of the states, by analyzing the eigenvalue spectrum of correlation
matrices and by using a hierarchical clustering method. All results are compatible with a chamge Bor
small connectivities, the solutions are collected in a finite small number of clusters, while the number of
clusters diverges slowly with system size for larger connectivities and replica symmetry breaking, but not
one-step replica symmetry breakitrRSB) occurs.
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I. INTRODUCTION problems that originate in theoretical computer science. Well

In combinatorial optimization problems, one has to mini-known problems of this kind are the satisfiabiliBAT)
mize a certain function over a discrete phase space consistifjoP/em[16-18, number partitionind19,29, graph color-
of, e.g., 2 elements. Often for a given realizatiomhich we "9 [21], and vertex covef22—-2§. In computer science, one
will also call instance there is more than one point where reWrites these optimization problems as decision problems,
the function takes the global minimum value. All these-€: @S problems where only the answers "yes” and “no” are
points are calledolutionsor ground statesin our paper we POSsible. Here, it means the question “Is there a solution
will deal with the phenomenon aflustering Usually the Where the function takes a value less tha@ The a_b(_)ve
ground states are not equally distributed over the phas@€ntioned problems belong to the cla$B [27] of decision
space. They cluster in one or many groups that are separat@§ePlems. This means that for any given input the function
by regions where the function takes values that are largef@n Pe evaluated easily, i.e., in a time polynomial in the size
than the global minimum. of the input(measured, e.g., in bitsA single suitable input,

Such clustering has already been observed in stati:sticéﬁr which the function takes a value less tharproves that
physics when studying spin glassig. For the mean-field (€ answer to the decision problem is "yes.” The open ques-
Ising spin glass, also called Sherrington-Kirkpatric®K) tion is whether.one_can flndapolynomlal-t]me algorithm that
model[2], Parisi has constructg@], using the replica trick fOr €very possible instance and value>ogither constructs
[4,5], an analytic solution for the free energy. This solutionSUCh an inputor, in case no such input exists, a proof for the
exhibits replica-symmetry breakin&SB), which means that nonexistence, which can be checked in polynomial time. For
the state space is organized in an infinitely nested hierarchi?® So-calledNP-completeproblems up to now only algo-
of clusters of states, characterized by ultrametriglily Re-  [thms with an exponentially growing running time in the
cently, this solution was mathematically proven to be the/VOrst case are known. But these instances are in some re-
exact ond7]. Also in numerical studies the clustering struc- 910ns of the instance space exponentially rare so one can do
ture of the SK model has been observed, e.g., by calculatingetter in thetypical case. , _
the distribution of overlap§8—10, when studying the spec-  What is “typical” cannot be defined uniquely, hence one
trum of spin-spin correlation matricés1,12 or when apply- has to study suitable parametriz¢dsually random en-
ing direct clustering13]. For finite-dimensional spin glasses, sembles of problem instances. By varying these parameters
RSB seems not to be present fulli4,15 at least not in the one often finds phase boundaries which separate regions
same way as for the mean-field model, since clustering haghere the answer to the decision problem is “y€§io”)
been observed numerically but in a different nonultrametriowith probability one[28,29. Analytically, the phase dia-
way [13]. On the other hand, for models like Ising ferromag- grams of these problems can be studied using some well-
nets it is clear that they do not exhibit RSB and all solutionsknown techniques from statistical physics, like the replica
are organized in one cluster. trick [30,31], or the cavity approacfil8]. But full solutions

The use of such analytical tools from statistical mechanichave not been found in the most cases, since the problems
enabled physicists recently to contribute to the analysis ofrom theoretical computer science are usually not defined on
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complete graphs but on diluted graphs, which poses addinumberof components, also with size @(1), each having
tional technical problems. Usually, one can only calculate thene closed loop, e.g., fdd— = the fraction of closed loops
solution in the case of replica symmef46,30,31, or in the  approaches zer88]. For c>1, the finite-size treelike com-
case of one-step replica symmetry breakihdRSB) [17,18, ponents and the components with loops remain, but there is
and look for the stability of the solutions. For this reason, theone additional component which contai@$N) vertices, the
relation between the solution and the clustering structure igo-calledgiant component

not well established and it is far from being clear for most | et V' CV be a subset of all vertices. We call a veriex
models how the clustering structure looks like. However,coveredif v e V', uncoveredf v ¢ V. Similarly an edge is
most statistical physicist believe that the failure of replicacoyeredif at least one of its endpoints is covered. If all edges

symmetry (RS leads indeed to clustering82,33. So far, ot G are covered, then we call’ a vertex covenVye. We
only few analytical studies of the clustering properties OfdenoteXE|V’| andx=X/N.

classical combinatorial optimization problems like SAT have . o graphG=(V,E) the minimal VC problem is the

been performedl6,34. These results depend or may depend ollowing optimization problem: Construct a vertex cover
on the specific assumptions one makes when applying ceb g op P X

tain analytical tools and when performing approximations. In_V%‘mi”CV Bf m||r|1|mﬁl cardinality and If|r)d Its fS'Zhe(mi”
particular, it is unlikely that the clustering of models on di- =[Vyc-min- Usually there are many solutions of the same

lute graphs is exactly the same as it is found for the meangiZ€: Thebackboneconsists of those vertices, which appear
field SK spin glass. So from the physicist point of view, it is I all solutions in the same manner, i.e., which are always
quite interesting to study the organization of the phase spacevered or always uncovered.

using numerical methods to understand better the meaning of Algorithmically, one can solve the minimal vertex-cover
“complex organization of phase space” for other, non-meanproblem independently for each component of the underlying
field models, like combinatorial optimization problems. It is graph. Any combination of the vertex covers of the indi-
the aim of this paper, to study numerically the clusteringvidual components gives a VC fd@. For c<1, where no
properties of one particular problem, the vertex-cover probgiant component exists, since the different components are
lem (see below using three different complementary ap- independent and of siz&(1), we cannot expect a compli-
proaches. cated ground-state structure. Furthermore, as we show in the

The study of the solution structure is not only importantappendix, the solution structure for trees is always simple.
for physicists, but also of interest for computer science. FroniHence the main emphasis of the paper will be on studying
an algorithmic point of view, especially the ground-statethe giant component appearing fer>1, since only this
structure seems to play an important role. If it consists onlycomponent can be responsible for a complex ground-state
of a single cluster, finding a solution typically will be easy. In structure.
this case one can often construct algorithms that quickly de- The vertex-cover problem on random graphs exhibits the
tect the promising regions of the solution space. On the othehreshold phenomenon described above. For minimum cov-
hand, the appearance of clustered ground states is often &S, in the limitN— o, one expects that the fractiog;, of
companied by the existence of suboptimal local minima ofcovered vertices depends only on the connectivjtye., we
the function to be optimize@@2]. They mislead local algo- have Xyin=Xmin(C). For X<Xmin(c) almost no graphs with
rithms and make computation expensive. In this case, theonnectivityc have a VC of this size, on the opposite for
typical computation time grows exponentially in the the size=Xn,(C) such a cover can be found with probability 1.
of the instance. By applying the replica methof,5] one can derive ana-

Such easy-hardtransitions have been observed in manylytical results[22] for this phase boundary. In the language
optimization problems, first by studying SAT numerically of statistical physics, we can think of the size of a VC as its
[35,3G. For SAT, the “yes” phaséwhich is referred to as energy, and of VCs of minimal size as ground states. Using a
SAT-phasg is split up into two regions: aeasySAT and a replica symmetric(RS) ansatz one getx(c)=1-[2W(c)
hard-SAT phase, which have exactly the properties described W(c)?]/2c, where W(c) is the Lambert-function given
above. For all known algorithms the onset of exponentiaby c=W(c)exp(W(c)). By studying the stability of the solu-
median running times is in theasyphase, although during tion and by comparison with numerical results, one finds that
the last years better and better heuristics extended the regiéfe RS solution is valid in the regian< e (wheree~ 2718 is
of instances that can be solved typically in polynomial time.the Euler numbeér This has also been proven rigoroufbg]
However it is an open question, whether this phase boundaryy analyzing a specific algorithm, the leaf removal algorithm
really gives an upper bound for the best heuristics possiblef40] which we will describe in Sec. II.

In our paper we deal with the minimal vertex-cow¥iC) The RS ansatz assumes that all ground states form a
problem. We consider random grapBs(V,E) with N ver-  single cluster. This assumption seems to be violatedcfor
ticesie1,2,..N and (c/2)N randomly drawn, undirected >e, where one can construct analytically solutions with
edgedi,j} e ECV XYV, each connecting a pair of vertices. In smaller fractionx of covered vertices. One can extend the
this notationc is the connectivity, i.e., the average number ofcalculation by including RSB, here we expect that the
edges each vertex is contained in. ground states form clusters that are separated by extensive

Let us briefly recall properties of random graphs that areenergy barriers. A single level of clustering corresponds to
relevant to our analysis of the ground-state struc{dd. one-step replica symmetric breakit@rRSB). If the clusters
For c<1 the typical random graph only consists of smallitself have some hierarchical clustering structure, i.e., a set of
trees each with size dD(1). Additionally there is a finite very similar solutions is subdivided in a structured manner in
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subsets of even more similar solutiomsstep-RSB or full-  following: A leaf of the graph is a vertexwith connectivity
RSB (the last being the case whatex) appears. However, one, i.e., it has only one neighbor vertexn a VC eithern or
this full-RSB is not necessarily the same as found in the SK has to be covered. If we covered the Iéghen only the
model. edge between andj would be covered. Thus we can cover
In our paper we will analyze the ground-state structure off and so all edges originating frofnare covered including
VC numerically. Especially we will focus on the behavior of the one ta. We no more need to consider these edges, there-
the cluster structure arourtke. We have studied different fore we remove them from the graph, possibly creating new
definitions of clusters and methods to detect nontrivial clusieaves. We iteratively repeat this procedure until the graph is
tering. They have in common that solutions which are veryempty or no more leaves are present and the so-catiesl
similar to each other are considered to be in one clusteremains. These steps take polynomial timeéNinBauer and
Definitions and details are given later on. So far it is not cleaiGolinelli show that forc<e this core is composed of small
to what extend the observation of clustering phenomena desomponents of size Igdyl), while for largerc a complex
pends on the definition of the clusters applied and which onetructure of sizeéD(N) remains.
is the “correct” one to describe RS or RSB. Nevertheless, the The core has to be treated with a more elaborate method,
results presented below for the different methods turn out tehe branch-and-bound algorithm. Its basic idea is that all pos-
be compatible with onset of clusteringate, supporting the  sible configurations can be represented as a binary tree. At
previous analytical findings. each node the tree splits into two subtrees corresponding to
The rest of the paper is organized as follows: First, wesetting one vertex to covered or to uncovered. Some of the
will describe in detail algorithms that we used to find mini- 2N |eaves correspond to vertex covers, some even to minimal
mal VCs: branch-and-bound, our backbone algorithm and gertex covers. The algorithm starts at the root node, by se-
Monte Carlo approach. In the main Sec. Ill we will presentlecting any vertex. The order the vertices are selected is in
three different methods for analyzing the ground-state strucprinciple arbitrary. A good performance can be obtained,
ture and the corresponding results: direct clustering, analysighen, e.g., selecting the vertices in the order of the current
of the eigenvalue spectrum of correlation matrices andiegree, i.e., the number of currently uncovered neighbors.
Ward's algorithm, which is a hierarchical clustering method.Since at this point we do not know which vertices have to be
Finally, we will summarize and give an outlook. covered, we have tbranch We set one of the variables to
one of the two possible values, i.e., we go down one of the
branches that start at the root node. Iteratively we continue
this procedure until a full VC has been found. Then we go

The vertex-cover problem is NP complete, so all knownback to an earlier branching point, one calls thacktrack-
algorithms have a solution time that in the worst case grow#d, and explore the other subtrees.
exponentially with the number of variables. In the typical Note, after setting a vertex to covered, new leaves may
case, algorithms often perform better. This behavior seems t@ppear in the graph. In this case, we remove them by apply-
be closely related to the cluster structures, which we study ifing leaf removal again. The removed vertices have to be
this work. For connectivities<e, a minimal VC can be inserted again, when backtracking. Furthermore, since we are
found typically in a time polynomial in the number of verti- interested only in full covers, we can always cover all neigh-
ces using the leaf removal algorithm, which is explained bebors of a vertex we have uncovered.
low. Thus the problem is typically easy in this region of A significant speedup can be achievedtmnunding The
connectivity. On the contrary there is no similar algorithmbasic idea is to omit subtrees, where for sure no minimum
known for random graphs witk>e. So the pointc=e is  Vertex cover can be found. This can be achieved, by keeping
also interesting from an algorithmic point of view. track of of the smallest coveX,,,, found so far. Let now, at

We use two different methods to generate VCs. Both willany stage when building the tre¥ <X, be the current
be explained in this sectior(1) exact enumeration of all nhumber of covered vertices and k) be the current num-
ground states angd2) sampling the structure of close-to- ber of uncovered edges that connect to the uncovered verti-
minimum covers with Monte Carlo methods. cesj. Since we are looking for a smaller cover thég;,, we

want to cover at most=X,,,—X—1 additional vertices. By
) coveringk vertices we can reduce the number of uncovered
A. Exact enumeration edges at most bil=max_...; d(j)+---d(jy). If the number

The ideal case to study the cluster structure of the soluef currently uncovered edges is greater tihdrwe can omit
tions is to have all solutions available. Since the number ofhis branch of the search tree since it cannot lead to a new
solutions grows very fast with system sikk a direct enu- optimum. Note that the branch-and-bound algorithm takes in
meration is not the best choice. We will now explain in sev-the worst case an exponential running time. Since the core is
eral steps the algorithms we have used. First we always splanly of orderO(log N) for c<e, this results in a polynomial
up the graph into its connected components, because theynning time in combination with leaf-removal for these val-
can be treated independently. ues ofc.

We now explain, hovone solutioncan be foundfor each Having found a single ground state, in order to enumerate
component As a first step, we apply theaf-removal algo-  all solutions, we can now again reduce the size of the prob-
rithm [40], which is a special variant of the algorithm by lem by identifying the vertices that have in all minimum
Tarjan and TrojanowsKi41]. The idea of leaf removal is the solutions the same state, the so-callemtkbone We first

II. ALGORITHMS FOR FINDING GROUND STATES
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FIG. 1. Identifying the backbone: A vertaxis fixed to be un-
covered by replacing it with new vertices, one for each aagee:
a leaf of the original graph can never belong to the covered back- - N N
bona. i belongs to the covered backbone, iff the minimal VCs of 50 100 150
the new graph are larger than in the original one.

log(number of GS)
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FIG. 2. Median number of ground states of the largest compo-
nt for different values o€. The circles represent values before
removal of the backbone, the triangles after the rem¢sabr bars
are at most of symbol sizeThe smallerc the larger is the speedup,
,E/vhich is due to reduced size of the largest component.

consider the covered backbone, i.e., vertices which are cov-,
ered in all minimum solutions.

Suppose that these solutions ha¥eertices covered and
vertexi is in the covered backbone. If we fixedo be un-
covered then we could only find vertex covers with at leas
X+1 covered vertices. This is the idea of our backbone al-

gorithm (cf. Fig. 1). begin
(1) Select a covered vertex split the graph into connected components;
(2) For each edgéi,j) add a new vertex; and a new for each component
edge(n;,j) to the graph. begin
(3) Remove vertex and all its edges from the graph. find a single solutiorusing leaf removal
(4) Find the ground-state energgover siz¢ of the new and branch-and-bound;
graph G’. Since all vertices; are now leavesG’ has a determine the backbone vertices;
ground state with alh; uncovered. IX(G')=X(G) then we remove all backbone vertices;
also have found a ground state@fwith vertexi uncovered. split the graph into connected components;
Obviously the converse is also true. So we hai(e&’) for each component
=X(G) = i ¢ covered backbone. begin
Since the backbone vertices are fixed and all adjacent enumerateall solutionsusing
edges are covered, we can remove them from the graph with- branch-and-bound;
out changing the number of solutions. Vertices, that have end
only neighbors belonging to the covered backbone are un-  end
covered in all solutions, they form thencovered backbone end

After the removal of the covered backbone they become iso- The Comp|ete set of all solutions contains all possib|e

lated vertices and can be removed as well. Since the backpmbinations of covers for all components. Since the trees
bone size is rather largi26], the remaining graph often contribute only a trivial background to the solution land-

breaks apart into different components which can be treategcape, we analyze in the following very often only the largest
individually. This speeds up the branch-and-bound algorithmzomponent of each graph.

when we now enumerate all ground states. In Fig. 2 we com- The complete algorithm can findne minimal VC for
pare the median number of ground states of the largest comyraphs with sizes betwedd~ 200 (for c=6) and N~ 2000
ponent before and after backbone removal, respectively. Ifor c=3). The number of solutions grows strongly exponen-

both cases the number grows exponentially, but the exponegl, so enumeration of all ground states is possible only up to
is reduced, especially for smaller This can be easily un- N=100.

derstood, since, e.g., a single component of two vertices that
gets separated from the largest component due to the re-
moval of the backbone reduces the number of ground states B. Monte Carlo algorithm
of this component by a factor of two.
For the enumeration of all ground states, we use a variant For larger graphs, we apply a parallel temperifij)
of the branch-and-bound algorithm without leaf removal.[42,43 Monte Carlo(MC) [44] algorithm to sample configu-
Also we allow at each node fdt=X,,,—X additional cov- rations.
ered vertices instead & X,;,—X-1, whereX,, is the size The basic approach is that we simulate the behavior of an
of a minimal vertex cover for the current component, whichequivalent system, thieard-core lattice gag24]. The graph
is known from the first step. We store all covers which havecorresponds to a lattice with edges of length one. Each vertex
the sizeX.,i,. When the algorithm terminates, all minimum corresponds to a site of the lattice that can be occupied by a

covers are stored. hard sphere with radius one. The stategered or uncovered
To summarize, the general outline of the algorithm is asof the vertices correspond to the two possibilitiest occu-
follows. pied or occupiedn this order. Hence, for a given coverof
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the graph, we assign atcupation number;xo each site of
the lattice:

PHYSICAL REVIEW E 70, 066120(2004)

TABLE I. Parallel tempering Monte Carlo algorithr,,c de-
notes the number of MC sweeps per copyenotes the number of
different copies.

{0 if corresponding vertex e U, 0
i =

1 if corresponding vertex & U.

The condition, that in a VC for each edge at least one of
its vertices has to be covered, implies for edges on the lattice
that at most one of the two endpoints can have the occupa-
tion number 1. In other words, if a sphere is put on Biteen
all sites that are connected itdoy an edge cannot be occu-
pied. A given assignment to the occupation numbers is thus a
VC, if the characteristic function

x® =11 (1 -xx))

{i.jleE

)

equals one. We can control the number of spheres by apply-
ing the grand-canonical formalism. The grand-canonical par-
tition function E is given by

E= 2 eXF(ME Xi))((i),

Xi:O,l

()

where u is the chemical potential. Configurations with a
larger number of spheres get an exponential greater weight.
In the largeu-limit the sum is dominated by the configura-
tions where the largest number of hard spheres is put on the
lattice. These configurations correspond to minimal VCs.

The MC moveg24] which sample Eq(3) consist in se-
lecting a vertex randomly and performing with probability
p=0.5 either a movéM) or an exchang€E) step. For de-
tails, see the algorithm in Table 1.

The MC simulation is performed within a H#5] frame-
work. Its idea is that different copies of the systéior the
same graphare simulated each at a different value of the
chemical potentiaju. At lower values ofu spheres can be

begin

initialize configuration{xi(l)}. ) .{xi(m} randomly
for t=1...Nyc do
begin
for each copyk=1...n do
do Ntimes
begin {perform one MC step
choose a random vertex
with probability 1/2 do stegM) or (E)
(M) if v is covered and has exactly one
uncovered neighbow then
uncoverv and covemw
elseto nothing
(E) if v is uncoveredhen
cover it with prop.e™#i
else ifv and all its neighbors
are coveredhen
uncoverv
end
for k=1...n-1
begin {perform PT movep
— (k) (k+1)
setAE = (u— i) (ZiX - =X )
with prop. exg—min(AE;, 0))
exchanggx®) — (¥
end
end

end

more easily removed than at higher ones, so the system can
overcome larger energy barriers. At high values othe

states have the same energy, neighboring states differ only in

system equilibrates to a local minimum. The basic PT step iswo verticesi andj which are linked by an edge. In other
to perform exchanges of the configuration for neighboringwords, one can get a neighboring st&t8 of a given ground
values of the chemical potential in a way such that globallystate by choosing a covered vertewhich has the property
detailed balance is ensured, for details, see Table I. that all but one vertey of the adjacent vertices df are

In our simulation we use=26 values betweep=1 and  covered. The state withuncovered ang covered is a neigh-
w=12. The simulations run foNyc=10° MC sweeps. 500

configurations are saved for a value 9. At this value ofu o8 b TS
most of the sampled states have the ground state energy; cf.
Fig. 3. For the system sizes that are tractable by the exact 0'7'\
algorithm(cf. beginning of subsectigrwe additionally veri- I
. ; : 0.6
fied that parallel tempering really finds ground states.
205
Ill. CLUSTERING METHODS
04
A. Clustering using hamming distance L
Our first naive approach for analyzing the ground-state 0‘3_' :g:gjg T
structure is based on the hamming distance between different 02 , , . ,

solutions. The hamming distandg,{({X“},{X#})=d,; of 0 2 4 6 8 10
two solutions is the number vertices in which the two con- .

figurations differ. If for two optimal solutions their hamming  FIG. 3. Average siz& of the vertex cover for different values of
distance is minimal, i.e.gha{{X'?},{X#})=2, we will call  the chemical potentiafu(N=64000. In the largex limit x ap-

them neighbors Since for a given realization all ground proaches the average sizgof the minimal vertex cover.
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boring ground state of@. If we think of covering markgut R

on each covered vertex, then this is equivalent to moving a 4 |- g:gg /I .
covering mark along an edge to an adjacent vertex. @tgp o | |— c=3.0 I,/

of the MC algorithm above exactly corresponds to this move. 3 %-8 /I———I'"

We define aclusterC as maximal set of ground states, that %3' == /I ]
can be reached by repeatedly applying the above procedure. € T .
Similar definitions of clusters have been used, e.g., for the Ez— ’,T/ .I_.-I--—{'/ i
analysis of random p-XOR-SAT34] or finite-dimensional § A
spin glasseg46]. States which belong to different clusters
are separated by a hamming distance of at least 4. In the 1+
Appendix we will show that for a graph, which is a tree, the — -
ground-state structure always consists of exactly one single 100 N 1000
cluster.

To decide that two arbitrary ground staté® andx? do FIG. 4. Average number of clusters in the solution space of

not belong to the same cluster, one needs to calculate tH{ge largest component as function of system size. The circle sym-
complete clusteg@ (or )2(/3)) belongs to. Hence the cluster- bols for small system sizes have been obtained by clustering com-

ing is very expensive plete sets of ground states. For large systems we sampled ground
The naive algorithm is as follows. ;ﬁteerlstigih a Monte Carlo algorithm at large but finite chemical

(1) Identify the giant component of the graplve ignore
the O(1) components since they do not influence the cluster

B. Cluster detection using sampled states
structure; cf. Sec.]l g P

(2) Calculate all ground state&® as described in Sec. IL. In this section we will show, how one can identify clusters
(3) Cluster the ground-state configurations: when only a small fraction of the solution space has been
begin sampled, as obtained by using Monte Carlo methodsﬁsuch as
S:=set of all ground states parallel tempering. We start in one of the configuratigtts
i=0 {number of so far detected clusters and follow a Iocal_ exchange dynamics which does not
while Snot emptydo change the energy, i.e., the size of the cover..lf we can reach
begin another configuration® thenx® andx?) are in the same
izi+1 cluster, according to the cluster definition above.
remove an elemert@ from S Let us compare two ground staté® andx'?. We do not
set clusteiC; = (X) need to consider vertices that are glready covered in both
set pointer® to first element ofC; states. Letov'@ be the subset of vertices & that are cov-
while ¥4 () NULL do ered in state @) but uncovered in staté?). In the same way
begin we definecav'®. Since all ground states have the same num-
for all elementst? of S ber of covered vertices both sets must have the same size.
if dorf XA, X) =2 then _l\/loreover, all ver_tlces |rm00(“)_must _be neighbors of vertices
begin in cov'®, otherwise the conf|gurat_|ons Wou_ld not be vertex
removes” from S covers. So the subgragh’ of G which contains aII.vertlces
put X at the end oG in cav'® and COU(.B) and all the edges fron® running be-
end tween these vertices is a bipartite grapBee Fig. 5.
set pointert® to next element of, The_ following algorithm moves cover marks on the graph
or 1o NULL if there is no more G’ to find out whethex®@ andx®) belong to the same clus-
ter.
en((ejnd (¢8)] Select a verteyx in G’ which is'covergd in §taté(“)
end and which has exactly one neighboerin G’ (i.e. w is cov-

- I - d in stated?)); if no suchv exists: stop.
The crucial point is that one really needs to consider al®™® ' i , ,
ground states and not just a sample. The algorithm is qua- (2) Removev andw from G', i.e., setG’:=G"\{v}\{w}.
dratic in the number of ground stat&$’, which makes the (3) Go to step(d).
method applicable to system sizes upNe= 70, depending

on the connectivityc. For every value o we sampled 10 O—@
realizations. The average number of clusters as function of &h :> Q
connectivity is shown as circles in Fig. 4. We mainly use this

naive method to judge the validity of its extension which will N .

be described in the next Sec. Ill B. Fox e the number of

clusters remains close to one. For larger valuestbe num- FIG. 5. Can one reach stagfrom statea just by moving one
ber of clusters increases with system size. Apparently theover mark at a time, never uncovering any edge? The algorithm
increase is compatible with a logarithmic growth as a func-ries to find the answer by looking at the bipartite graph induced by
tion of system size, see discussion in the next section. all nodes that are covered eitherdnor in 8 (but not in both.
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Each pair of vertices taken out in st€p) corresponds to
moving a covering mark along the edge connectirandw.
Since w is always the only uncovered neighbor ofthe
algorithm only visits states that are ground states. Note that
each covering mark is moved at most once, for this reason,
we call this procedure “ballistic searci47]. This method
has been already applied to study the ground-state structure
of finite-dimensional spin glassé¢46].

If the algorithm stops witlG’ =0 we have found a path in
configuration space between statesand g that only goes
through ground states and we know for sure thaind 3 are 1 .
in the same cluster. !

[

number of clusters

On the other hand, if such a path exists where each cov- 100 N 1000
ering mark has to be moved at most once, then the algorithm
is guaranteed to find [48]. We prove this by contradiction. FIG. 6. Behavior of the number of detected clusters depending

The main reason is that for two given statesand 8 the  on the number of sampled states for different valuesc.oThe

cover mark on any vertex is moved to the same vertexin  crossed symbols are fa=4, circles forc=3, and small bars for

all possible paths, i.e., the individual moves ae unique, only=2. Forc<e the numbers are confined within error bars; €r

the order in which they are done can differ between paths. >e only a fraction of the clusters are detected. The number of
Suppose the opposite would be true, i.e., there exists detected clusters is still increasing with the number of sampled

path P in which the mark on vertex is moved to vertexv  states.

and a pathP’ in which it is moved to vertexw’. Take the first

vertexv in P for which this is true. The moves for all cover lower bound for the real average number of clusters. The
marks moved prior t@ in P are the same i®’. So one can  main result is unaffected by this sample-size effect: For small
do all these moves, afterwardshas only one uncovered connectivitiesc the number of clusters is close to one, inde-
neighbor, namelyw. Next, move all cover marks i’,  pendent of the system size, and for large values dfie
which have not yet been moved. Nowwill be covered, too.  humber of clusters grows. The results are compatible with
But then vertexv and all its neighbors will be Covered, the Change appearing neze, but we cannot determine the
which is impossible in a ground state. Contradiction, there,ajue of the change precisely from our data. Also we cannot
cannot be two such paths. be sure that the growth of the number of clusters is only
Hence, if the algorithm stops in ste@) with G’ # 0, then  |ogarithmically with system size. But it seems likely that the
no such path exists where each covering mark is moved afumber of clusters grows slower than exponentially with
most once. This means that eith& andx'® are in different  system size, since far=4, N=800 we find on average less
clusters or that they are connected by a path such that @#an three clusters. Hence, this is different from the 1-RSB
covering mark has to be moved at least twice. To excludghase of the satisfiability problerfl6,17,33. This slow
that the clustering is wrong because some configurations agowth is compatible with the analytical result that for

connected by paths where a clustering mark is moved more e the 1-RSB solution is not the correct of#5], hence a
than once, we compare all configurations pairwise with eachjgher level of RSB is to be expected.

other. This means, we use the transitivity of the cluster to
exclude that two configurations are mistaken to be in differ-
ent clusters although they are in the safé]. And indeed
we have sometimes observed that for three configuratipns N this section we will use a completely different method
B, v, paths are found frona to 8 and fromg3 to y, but not ~ to analyze the structure of the solution space. Sinetval.
from a to y. [11,12 describe a tool for counting independent pure states
For each realization we Samp|e with para||e| temperingin ISing Spin glaSSES. Here we summarize the basic aSpeCtS of
500 configurations during a time of 40MC steps as de- their method. Their main idea is to study the spectral prop-
scribed in Sec. 11 B. This number of configurations is far €rties of the spin-spin correlation mat{i8S) = C;; where()
high enough to ensure that never two configurations belonghdicates the thermal average. This matrix is semidefinite and
ing actually to the same cluster are mistaken to be in differsince(S§)=10i it has traceN. For spin-glasses above the
ent clusters. On the other hand, it might happen that for somerdering temperaturd., all eigenvalues are of order one.
(small clusters no configurations are sampled. We haveBelow T, long-range order appears. If there is a single pair
tested this explicitly by calculating the number of clusters af pure states, then in the low temperature liffiit- 0, C;;
a function of the number of configurations included in the— £1, C has one eigenvalue which approaciesasT— 0,
clustering, see Fig. 6. One can see that for small connectiviand the rest of the eigenvalues decays to zero with a power
ties the number of clusters is more or less independent on tHaw in N. So one can detect the presence of long range order
size of the sample, while for larger values ofand larger  just from analyzing the spectrum ;.
system sizes, the number of clusters increases slightly with In the frozen, disordered phase, the phase space breaks up
the sample size. This means that in Fig. 4, where we shouwnto many pairs of pure states. They are characterized by
the average number of clusters we find for different connectheir clustering property4], which we will explain in more
tivities (for the largest sample sigewe have basically a detail in the next Sec. Il D. Sinovat al. argue that the

C. Extensive eigenvalues and the number of clusters
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' ' ' T T that the third eigenvalue slowly decays for all connectivities.
7 Supposing that the behavior [pf,] does not change again

] for large N, we conclude that RSB must be present starting
from a value of 2<c<4. Please note that we cannot distin-
guish between 1-RSB and higher order of RSB from this

Z
D method. For this reason, we have applied another method
= o me described in the next section.
-—c=12 ™. =.....
= c=2 Tl T I
0.01F 17 2;% T 1 D. Hierarchical clustering approach
oo -
10(')" c=1 : - — .1(;00 In this last subsection, we will use a clustering approach

N that organizes the states in a hierarchical structure. Such
clustering methodq49] are widely used in general data
analysis, sometimes also used in statistical mechanics; see,
e.g., Refs[13,50,53. The methods all start by assuming that
~~~~~ Frooe- 1 all states belong to separate clusters. Similarity between clus-

B
~

~

R S ters (and statesis defined by a measure callg@oximity
o ] matrix d, 5. At each step two very similar clusters are joined
and so a hierarchical tree of clusters is formed.

A valid hierarchical clustering implies a true ultrametric
e ] structure[6]. Such a structure is a very important property of
. ] the Parisi-RSB solutiofi3] of the mean-field SK model: All
-] triples (X@,x® x9) of ground states form isosceles tri-
1000 angles with the third side shorter or equal to the other two
N sides.

We will try to detect a hierarchical structure in the phase
space of finite-size instances of VC. As proximity measure
for two initial clusters, each containing only a single state,

number number of extensive eigenvaluesOgfcorresponds We naturally choose the hamming distance between these
to the number of independent pure states of the system. Thi¥/0 States as defined in Sec. Il A, divided by the number of
makes it possible to detect RSB, which must be present, ifertices. At each step the two clustézg and C; with the
the correlation matrix has more than one extensive eigedMinimal distance are merged to form a new clugierThen
value. Note that this way of looking at the phase-space strudh® Proximity matrix is updated by deleting the distances
ture is different from looking at the clusters: The number ofinvolving C, and C; and adding the distances betwe@n
clusters may grow exponentially with the system size, whilednd all other cluster€; in the system. So we need to extend
the number of independent pure states can never be larglte Proximity measure to clusters with more than one state,
thanN, since aN x N matrix has onlyN eigenvalues. based on some suitable update rule which is usually a func-
We apply this method directly to the vertex-cover prob-tion of the distances, s, d,,s anddg; _ ,
lem. For every realization we calculaB; averaged over the ~_ The choice of this function is a widely discussed field
configurations sampled by parallel tempering w@k=1 if ~ Since it can have a great impact on the c[uspermg obtalm_a-d
vertexi is covered an&=—1 if it is uncovered. We calculate [49]. It should represent the natural organization present in

the three largest eigenvalues and average over 100 to 4de data and not some artificial structure induced from the
realizations, depending on the system size. choice of the update rule. Here we will ugéard’s method

In Fig. 7 we show our results for different valuesand (also calledminimum variance methgd52]. The distaqce
N at «=9. As one can see in the next section, thits large ~ Petween the merged clust€r, and some other clusté; is
enough to allow for a nontrivial behavior. We plot the nor- 9iven by
malized value of the second and third largest eigenvalue as a
function of system size. As expected for1 andc=2 the _ (Ng+nydy s+ (Ng+ Ny s~ (N + Np)dap @)
system is found to be in the replica symmetric phase: There o N, +Ng+n; '
is only one extensive eigenvalue, the second and the third
decay with a power oN. wheren,, ng, ns are the number of elements in clusty,

For very largec the behavior is different. The second Cg C,, respectively. Heuristically Ward’s method seems to
largest eigenvalue reaches a plateau value arobhd outperform other update rules. The choice guarantees that at
=200-300. The closer the system is to tee the later this  each step the two clusters to be merged are chosen in a way
plateau is reached. Especially for 3 the behavior is not yet that the variance inside each cluster summed over all clusters
clear from the reachable system sizes. The same applies tacreases by the minimal possible amount.
the third eigenvalue, although one can see a difference be- The output of the clustering algorithm can be represented
tween the largest and the smallest values.diowever, with  as adendogram This is a tree with the ground states as
the reachable system sizes we cannot rule out the possibilifgaves and each node representing one of the clusters at dif-

(AN
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OO0 00

=W A=
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8

FIG. 7. Scaling of the second largegop) and third largest
(bottom) eigenvalue ofC;;.
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FIG. 8. (color online Sample dendograms of 100 ground states for a graph with 400 vertices. Darker colors correspond to closer
distances. The left one is et2 andu=9, in the i.e., in the RS phase. There is no structure present. The same is te&fandw=2. For
c=6 andu =9 the dendogram provides a structure, where the ground states form clusters. The careful reader may recognize a second or third
level of clustering in this right picture.

ferent levels of hierarchy; see the bottom half of the ex-where[...]g denotes the average over the disorder. This co-

amples in Fig. 8. efficient measures the correlation between the original dis-
Note that Ward's algorithm is able to cluster any datatanced of two states and theicophenetic distance.dm-

which can be always displayed as a dendogram, even if ngosed by the clusteringl, is measured on the dendogram as

structure is presented. Hence, one has to perform additionghe distance given by E@4) of the two largest clusters that
checks. A visual check is to plot the hamming distances as gontain only one of the states.

matrix where the rows and columns are ordered according t0 Thg regyits of this test are shown in Fig. 9. The averages
the dendogram. This is shown in the top half of Fig. 8.
Darker colors correspond to smaller distances. The figur
shows three different realizations: For small valuesuafio
cluster structure is present. For small valuescefe and
large values ojs, the system is in the RS phase, only a single
cluster is present. For larger valuescadnd high values ofi, 1
the ordering of the states obtained by the clustering algo-
rithm reveals an underlying structure which can be seen in
the right part of the figure. One can see that the states form
groups where the hamming distance between the members is
small (dark colorg while the distance to other states is large. 061
Thus, our results are compatible with clustering being Mo
present for realizations witbh>e. If you look carefully you 04
can see more structure inside the clusters. Multiple levels of
clustering indicate higher levels of RSB which we expect to
be present for these values ©®{24,25.

To check more quantitatively whether the cluster structure Lo . .
detected by the algorithm is actually present in the data we =T =2 3 4 6 12
evaluate thecophenetic correlation coefficient

are over all samples generated with parallel tempe¢aig
Bec. II B). As one sees, there is no correlation for small val-
ues ofc. This is as expected, because fore no cluster

02|

FIG. 9. The correlation between hamming distance and cophe-
K=[d-d:g-[d]ld:]g, (5) netic distance measured on the dendogram increaseswith
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structure is presentC increases with increasing magnitude
of the connectivity. In particular, the different curves fer
>100 cross neac=e. For small values ot, K decreases
with growing system size, while for large values af
increases. This indicates again that aroone@ a hierarchical
organization of the VC solution space sets in. However, for
larger values ot the average correlation seems to converge FIG. 10. If there is a ground state with vertexuncovered

to a value close tdC~=0.8. This means that the clustering (right), then all subgraphs induced by deletimgnust have a mini-
imposed by Ward’s method does not fully represent the strugmal vertex cover with the same size as they have in a ground state
ture inherent to minimal VCs. with vertexv covered(left).

APPENDIX: THE SOLUTION SPACE OF VERTEX
COVER ON A TREE CONSISTS ONLY

IV CONCLUSION OF A SINGLE CLUSTER

In our paper we analyzed the ground-state properties of

e vt proen, Epecalty e 6520 Sy it sy o e i 59 . e it
P 9- a seriesX%);.,  of ground states withk®? =x® and x(%)

c<e basically only one ground-state cluster is present. For . - : .
larger conne)étiviti)(/as theg number of numericarl)y detected’i@ and dham()z(gl)’)z(&'ﬂ))._z’ l.e., minimal ham.mmg d|§-
clusters increases, apparently logarithmically. This is comi2nce between consecutive elements of the series. In this ap-
patible with the fact that in analytical calculations, for e, pendix we wil shovy, that fo_r trees there can be only one
the replica-symmetric solution is not longer valid and theclus.ter. The proof will be_by induction on the numkderof

level of RSB seems to be higher than 1-RSB. More evidenc¥ertices in the tree. FON=2 there are o ground states,

for the appearance of RSB was found by analyzing the speé’yhg:h have harr;]mmg d'StanCtE 2.t i Nand id
tral properties of the vertex-vertex correlation function: For uppose we have proven the statementiand consider

c>e two or more eigenvalues are extensive which can onl)f’Jl graph of §(|§z)eN.+1. First note that there' Is at 'Ieast one
be the case, if RSB is present. ground state'” with a vertexv covered that is a neighbor of

With a clustering approach using Ward's algorithm, wed leafvy. Such a ground state can be constructed, e.g., using

tried to detect directly a hierarchical structure in the ground€f removal. We show separately, théd is in the same
states. We find qualitatively higher levels of clusteringcluster as all ground statég”’} with v covered and with
present in the ground-state structure for high values.of uncovered(See Fig. 10.
This would indicate higher level of replica symmetry break- Let %% be a ground state with covered. If we delete
ing. Also, forc>e, the clustering imposed by the algorithms vertexv from the tree, then it falls apart into components
becomes more and more compatible with the structuring 06, ...,G, wherek is the connectivity ofv. X'? induces a
the state space. cover on eachG; which is also a minimal cover on each
In summary, the different algorithms are able to find indi- subgraph, since we started with a minimal coverGrnThe
cations for RSB in the solution landscape of combinatorialsame is true for®". Each of the subgraphs has size smaller
optimization problems. Note that the presence of RSB doeghanN, so by induction we can construct a series frigfhto

not necessarily mean that it is the same type of RSB, whicks) separately on each subgraph, hence both ground states
is found in the solution of the SK model. The details of the 56 i the same cluster.

organization of the solution space, e.g., the extent of ultra-

metricity, can be different. This can be seen in the conver, Now consider a ground staié”” that hasv uncovered.
Y, . : - Again we consider the subgraphs one gets by removing
gence of the cophenetic correlation coefficient to a valu

2oparently smaller than one $rom the graph. LeX; be the number of covered vertices in
PP y ' the cover induced from'® on the subgrapks;, analogues let

_ From our results, which support the previous analytlcalx,i be the number of covered vertices in the cover induced
findings, we conclude it seems promising to apply the meth-

ods to other more complicated ensembles of VC or to othef 0™ X?). Sincex'? andx'” both are ground states we have

optimization problems, where less analytical results arei*+1=2iX'; which is equivalent to 1Z(X;—X). All
available, in order to understand their behavior better. summands on the right side must be non-negative, otherwise

x¥ would not be a ground state. So there exists exactly one
subgraplG; with X/ —X;= 4, ;. This subgraph must be the leaf
vo. Fori # j the covers induced b}l‘?’) on G; must be ground
states of the subgraph, singe=X;. So by induction we can

The authors obtained financial support from thelk-  construct a series fromi® to x(°", again separately on each
swagenStiftungGermany within the program “Nachwuchs- subgraphG; for i #j and on the subgrapfv}U{vg}, hence
gruppen an Universitaten.” We thank M. Weigt for countlessboth ground states are in the same cluster.
hours of fruitful discussions. A.K.H. thanks G. Woeginger Together we showed that all ground states are in the same
for interesting discussions at the Dagstuhl seminar 0109tluster asx'?, thus there can only be a single cluster of
“Algorithmic Techniques in Physics.” ground states.

In Sec. Il A we defined a cluste€ as a maximal set of
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