
Clustering analysis of the ground-state structure of the vertex-cover problem

Wolfgang Barthel and Alexander K. Hartmann
Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany

(Received 7 March 2004; published 10 December 2004)

Vertex cover is one of the classical NP-complete problems in theoretical computer science. A vertex cover of
a graph is a subset of vertices such that for each edge at least one of the two endpoints is contained in the
subset. When studied on Erdös-Rényi random graphs(with connectivityc) one observes a threshold behavior:
In the thermodynamic limit the size of the minimal vertex cover is independent of the specific graph. Recent
analytical studies show that on the phase boundary, for small connectivitiesc,e, the system is replica
symmetric, while for larger connectivities replica symmetry breaking occurs. This change coincides with a
change of the typical running time of algorithms from polynomial to exponential. To understand the reasons for
this behavior and to compare with the analytical results, we numerically analyze the structure of the solution
landscape. For this purpose, we have also developed an algorithm, which allows the calculation of the back-
bone, without the need to enumerate all solutions. We study exact solutions found with a branch-and-bound
algorithm as well as configurations obtained via a Monte Carlo simulation. We analyze the cluster structure of
the solution landscape by direct clustering of the states, by analyzing the eigenvalue spectrum of correlation
matrices and by using a hierarchical clustering method. All results are compatible with a change atc=e. For
small connectivities, the solutions are collected in a finite small number of clusters, while the number of
clusters diverges slowly with system size for larger connectivities and replica symmetry breaking, but not
one-step replica symmetry breaking(1-RSB) occurs.
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I. INTRODUCTION

In combinatorial optimization problems, one has to mini-
mize a certain function over a discrete phase space consisting
of, e.g., 2N elements. Often for a given realization(which we
will also call instance) there is more than one point where
the function takes the global minimum value. All these
points are calledsolutionsor ground states. In our paper we
will deal with the phenomenon ofclustering: Usually the
ground states are not equally distributed over the phase
space. They cluster in one or many groups that are separated
by regions where the function takes values that are larger
than the global minimum.

Such clustering has already been observed in statistical
physics when studying spin glasses[1]. For the mean-field
Ising spin glass, also called Sherrington-Kirkpatrick(SK)
model [2], Parisi has constructed[3], using the replica trick
[4,5], an analytic solution for the free energy. This solution
exhibits replica-symmetry breaking(RSB), which means that
the state space is organized in an infinitely nested hierarchy
of clusters of states, characterized by ultrametricity[6]. Re-
cently, this solution was mathematically proven to be the
exact one[7]. Also in numerical studies the clustering struc-
ture of the SK model has been observed, e.g., by calculating
the distribution of overlaps[8–10], when studying the spec-
trum of spin-spin correlation matrices[11,12] or when apply-
ing direct clustering[13]. For finite-dimensional spin glasses,
RSB seems not to be present fully[14,15] at least not in the
same way as for the mean-field model, since clustering has
been observed numerically but in a different nonultrametric
way [13]. On the other hand, for models like Ising ferromag-
nets it is clear that they do not exhibit RSB and all solutions
are organized in one cluster.

The use of such analytical tools from statistical mechanics
enabled physicists recently to contribute to the analysis of

problems that originate in theoretical computer science. Well
known problems of this kind are the satisfiability(SAT)
problem[16–18], number partitioning[19,20], graph color-
ing [21], and vertex cover[22–26]. In computer science, one
rewrites these optimization problems as decision problems,
i.e., as problems where only the answers “yes” and “no” are
possible. Here, it means the question “Is there a solution
where the function takes a value less thanx”? The above
mentioned problems belong to the classNP [27] of decision
problems. This means that for any given input the function
can be evaluated easily, i.e., in a time polynomial in the size
of the input(measured, e.g., in bits). A single suitable input,
for which the function takes a value less thanx, proves that
the answer to the decision problem is “yes.” The open ques-
tion is whether one can find a polynomial-time algorithm that
for every possible instance and value ofx either constructs
such an input or, in case no such input exists, a proof for the
nonexistence, which can be checked in polynomial time. For
the so-calledNP-completeproblems up to now only algo-
rithms with an exponentially growing running time in the
worst case are known. But these instances are in some re-
gions of the instance space exponentially rare so one can do
better in thetypical case.

What is “typical” cannot be defined uniquely, hence one
has to study suitable parametrized(usually random) en-
sembles of problem instances. By varying these parameters
one often finds phase boundaries which separate regions
where the answer to the decision problem is “yes”(“no” )
with probability one [28,29]. Analytically, the phase dia-
grams of these problems can be studied using some well-
known techniques from statistical physics, like the replica
trick [30,31], or the cavity approach[18]. But full solutions
have not been found in the most cases, since the problems
from theoretical computer science are usually not defined on
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complete graphs but on diluted graphs, which poses addi-
tional technical problems. Usually, one can only calculate the
solution in the case of replica symmetry[16,30,31], or in the
case of one-step replica symmetry breaking(1-RSB) [17,18],
and look for the stability of the solutions. For this reason, the
relation between the solution and the clustering structure is
not well established and it is far from being clear for most
models how the clustering structure looks like. However,
most statistical physicist believe that the failure of replica
symmetry (RS) leads indeed to clustering[32,33]. So far,
only few analytical studies of the clustering properties of
classical combinatorial optimization problems like SAT have
been performed[16,34]. These results depend or may depend
on the specific assumptions one makes when applying cer-
tain analytical tools and when performing approximations. In
particular, it is unlikely that the clustering of models on di-
lute graphs is exactly the same as it is found for the mean-
field SK spin glass. So from the physicist point of view, it is
quite interesting to study the organization of the phase space
using numerical methods to understand better the meaning of
“complex organization of phase space” for other, non-mean-
field models, like combinatorial optimization problems. It is
the aim of this paper, to study numerically the clustering
properties of one particular problem, the vertex-cover prob-
lem (see below) using three different complementary ap-
proaches.

The study of the solution structure is not only important
for physicists, but also of interest for computer science. From
an algorithmic point of view, especially the ground-state
structure seems to play an important role. If it consists only
of a single cluster, finding a solution typically will be easy. In
this case one can often construct algorithms that quickly de-
tect the promising regions of the solution space. On the other
hand, the appearance of clustered ground states is often ac-
companied by the existence of suboptimal local minima of
the function to be optimized[32]. They mislead local algo-
rithms and make computation expensive. In this case, the
typical computation time grows exponentially in the the size
of the instance.

Sucheasy-hardtransitions have been observed in many
optimization problems, first by studying SAT numerically
[35,36]. For SAT, the “yes” phase(which is referred to as
SAT-phase) is split up into two regions: aneasy-SAT and a
hard-SAT phase, which have exactly the properties described
above. For all known algorithms the onset of exponential
median running times is in theeasyphase, although during
the last years better and better heuristics extended the region
of instances that can be solved typically in polynomial time.
However it is an open question, whether this phase boundary
really gives an upper bound for the best heuristics possible.

In our paper we deal with the minimal vertex-cover(VC)
problem. We consider random graphsG=sV,Ed with N ver-
tices i P1,2, . . .N and sc/2dN randomly drawn, undirected
edgeshi , jjPE,V3V, each connecting a pair of vertices. In
this notationc is the connectivity, i.e., the average number of
edges each vertex is contained in.

Let us briefly recall properties of random graphs that are
relevant to our analysis of the ground-state structure[37].
For c,1 the typical random graph only consists of small
trees each with size ofOs1d. Additionally there is a finite

numberof components, also with size ofOs1d, each having
one closed loop, e.g., forN→` the fraction of closed loops
approaches zero[38]. For c.1, the finite-size treelike com-
ponents and the components with loops remain, but there is
one additional component which containsOsNd vertices, the
so-calledgiant component.

Let V8,V be a subset of all vertices. We call a vertexv
coveredif vPV8, uncoveredif v¹V8. Similarly an edge is
coveredif at least one of its endpoints is covered. If all edges
of G are covered, then we callV8 a vertex coverVVC. We
denoteX;uV8u andx;X/N.

For a graphG=sV,Ed the minimal VC problem is the
following optimization problem: Construct a vertex cover
VVC−min,V of minimal cardinality and find its sizeXmin
;uVVC−minu. Usually there are many solutions of the same
size. Thebackboneconsists of those vertices, which appear
in all solutions in the same manner, i.e., which are always
covered or always uncovered.

Algorithmically, one can solve the minimal vertex-cover
problem independently for each component of the underlying
graph. Any combination of the vertex covers of the indi-
vidual components gives a VC forG. For c,1, where no
giant component exists, since the different components are
independent and of sizeOs1d, we cannot expect a compli-
cated ground-state structure. Furthermore, as we show in the
appendix, the solution structure for trees is always simple.
Hence the main emphasis of the paper will be on studying
the giant component appearing forc.1, since only this
component can be responsible for a complex ground-state
structure.

The vertex-cover problem on random graphs exhibits the
threshold phenomenon described above. For minimum cov-
ers, in the limitN→`, one expects that the fractionxmin of
covered vertices depends only on the connectivityc, i.e., we
have xmin=xminscd. For x,xminscd almost no graphs with
connectivityc have a VC of this size, on the opposite forx
ùxminscd such a cover can be found with probability 1.

By applying the replica method[4,5] one can derive ana-
lytical results[22] for this phase boundary. In the language
of statistical physics, we can think of the size of a VC as its
energy, and of VCs of minimal size as ground states. Using a
replica symmetric(RS) ansatz one getsxscd=1−f2Wscd
+Wscd2g /2c, whereWscd is the Lambert-W-function given
by c=Wscdexp(Wscd). By studying the stability of the solu-
tion and by comparison with numerical results, one finds that
the RS solution is valid in the regionc,e (wheree<2718 is
the Euler number). This has also been proven rigorously[39]
by analyzing a specific algorithm, the leaf removal algorithm
[40] which we will describe in Sec. II.

The RS ansatz assumes that all ground states form a
single cluster. This assumption seems to be violated forc
.e, where one can construct analytically solutions with
smaller fractionx of covered vertices. One can extend the
calculation by including RSB, here we expect that the
ground states form clusters that are separated by extensive
energy barriers. A single level of clustering corresponds to
one-step replica symmetric breaking(1-RSB). If the clusters
itself have some hierarchical clustering structure, i.e., a set of
very similar solutions is subdivided in a structured manner in
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subsets of even more similar solutions,n-step-RSB or full-
RSB (the last being the case wheren=`) appears. However,
this full-RSB is not necessarily the same as found in the SK
model.

In our paper we will analyze the ground-state structure of
VC numerically. Especially we will focus on the behavior of
the cluster structure aroundc=e. We have studied different
definitions of clusters and methods to detect nontrivial clus-
tering. They have in common that solutions which are very
similar to each other are considered to be in one cluster.
Definitions and details are given later on. So far it is not clear
to what extend the observation of clustering phenomena de-
pends on the definition of the clusters applied and which one
is the “correct” one to describe RS or RSB. Nevertheless, the
results presented below for the different methods turn out to
be compatible with onset of clustering atc=e, supporting the
previous analytical findings.

The rest of the paper is organized as follows: First, we
will describe in detail algorithms that we used to find mini-
mal VCs: branch-and-bound, our backbone algorithm and a
Monte Carlo approach. In the main Sec. III we will present
three different methods for analyzing the ground-state struc-
ture and the corresponding results: direct clustering, analysis
of the eigenvalue spectrum of correlation matrices and
Ward’s algorithm, which is a hierarchical clustering method.
Finally, we will summarize and give an outlook.

II. ALGORITHMS FOR FINDING GROUND STATES

The vertex-cover problem is NP complete, so all known
algorithms have a solution time that in the worst case grows
exponentially with the number of variables. In the typical
case, algorithms often perform better. This behavior seems to
be closely related to the cluster structures, which we study in
this work. For connectivitiesc,e, a minimal VC can be
found typically in a time polynomial in the number of verti-
ces using the leaf removal algorithm, which is explained be-
low. Thus the problem is typically easy in this region of
connectivity. On the contrary there is no similar algorithm
known for random graphs withc.e. So the pointc=e is
also interesting from an algorithmic point of view.

We use two different methods to generate VCs. Both will
be explained in this section:(1) exact enumeration of all
ground states and(2) sampling the structure of close-to-
minimum covers with Monte Carlo methods.

A. Exact enumeration

The ideal case to study the cluster structure of the solu-
tions is to have all solutions available. Since the number of
solutions grows very fast with system sizeN, a direct enu-
meration is not the best choice. We will now explain in sev-
eral steps the algorithms we have used. First we always split
up the graph into its connected components, because they
can be treated independently.

We now explain, howone solutioncan be found(for each
component). As a first step, we apply theleaf-removal algo-
rithm [40], which is a special variant of the algorithm by
Tarjan and Trojanowski[41]. The idea of leaf removal is the

following: A leaf of the graph is a vertexi with connectivity
one, i.e., it has only one neighbor vertexj . In a VC eitheri or
j has to be covered. If we covered the leafi then only the
edge betweeni and j would be covered. Thus we can cover
j and so all edges originating fromj are covered including
the one toi. We no more need to consider these edges, there-
fore we remove them from the graph, possibly creating new
leaves. We iteratively repeat this procedure until the graph is
empty or no more leaves are present and the so-calledcore
remains. These steps take polynomial time inN. Bauer and
Golinelli show that forcøe this core is composed of small
components of size logsNd, while for larger c a complex
structure of sizeOsNd remains.

The core has to be treated with a more elaborate method,
the branch-and-bound algorithm. Its basic idea is that all pos-
sible configurations can be represented as a binary tree. At
each node the tree splits into two subtrees corresponding to
setting one vertex to covered or to uncovered. Some of the
2N leaves correspond to vertex covers, some even to minimal
vertex covers. The algorithm starts at the root node, by se-
lecting any vertex. The order the vertices are selected is in
principle arbitrary. A good performance can be obtained,
when, e.g., selecting the vertices in the order of the current
degree, i.e., the number of currently uncovered neighbors.
Since at this point we do not know which vertices have to be
covered, we have tobranch: We set one of the variables to
one of the two possible values, i.e., we go down one of the
branches that start at the root node. Iteratively we continue
this procedure until a full VC has been found. Then we go
back to an earlier branching point, one calls thisbacktrack-
ing, and explore the other subtrees.

Note, after setting a vertex to covered, new leaves may
appear in the graph. In this case, we remove them by apply-
ing leaf removal again. The removed vertices have to be
inserted again, when backtracking. Furthermore, since we are
interested only in full covers, we can always cover all neigh-
bors of a vertex we have uncovered.

A significant speedup can be achieved bybounding. The
basic idea is to omit subtrees, where for sure no minimum
vertex cover can be found. This can be achieved, by keeping
track of of the smallest coverXmin found so far. Let now, at
any stage when building the tree,X,Xmin be the current
number of covered vertices and letds jd be the current num-
ber of uncovered edges that connect to the uncovered verti-
cesj . Since we are looking for a smaller cover thanXmin, we
want to cover at mostk=Xmin−X−1 additional vertices. By
coveringk vertices we can reduce the number of uncovered
edges at most byM =maxj1,¯,jk

ds j1d+¯ds jkd. If the number
of currently uncovered edges is greater thanM we can omit
this branch of the search tree since it cannot lead to a new
optimum. Note that the branch-and-bound algorithm takes in
the worst case an exponential running time. Since the core is
only of orderOslog Nd for c,e, this results in a polynomial
running time in combination with leaf-removal for these val-
ues ofc.

Having found a single ground state, in order to enumerate
all solutions, we can now again reduce the size of the prob-
lem by identifying the vertices that have in all minimum
solutions the same state, the so-calledbackbone. We first
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consider the covered backbone, i.e., vertices which are cov-
ered in all minimum solutions.

Suppose that these solutions haveX vertices covered and
vertex i is in the covered backbone. If we fixedi to be un-
covered then we could only find vertex covers with at least
X+1 covered vertices. This is the idea of our backbone al-
gorithm (cf. Fig. 1).

(1) Select a covered vertexi.
(2) For each edgesi , jd add a new vertexnj and a new

edgesnj , jd to the graph.
(3) Remove vertexi and all its edges from the graph.
(4) Find the ground-state energy(cover size) of the new

graph G8. Since all verticesnj are now leaves,G8 has a
ground state with allnj uncovered. IfXsG8d=XsGd then we
also have found a ground state ofG, with vertexi uncovered.
Obviously the converse is also true. So we haveXsG8d
=XsGd⇔ i¹ covered backbone.

Since the backbone vertices are fixed and all adjacent
edges are covered, we can remove them from the graph with-
out changing the number of solutions. Vertices, that have
only neighbors belonging to the covered backbone are un-
covered in all solutions, they form theuncovered backbone.
After the removal of the covered backbone they become iso-
lated vertices and can be removed as well. Since the back-
bone size is rather large[26], the remaining graph often
breaks apart into different components which can be treated
individually. This speeds up the branch-and-bound algorithm
when we now enumerate all ground states. In Fig. 2 we com-
pare the median number of ground states of the largest com-
ponent before and after backbone removal, respectively. In
both cases the number grows exponentially, but the exponent
is reduced, especially for smallerc. This can be easily un-
derstood, since, e.g., a single component of two vertices that
gets separated from the largest component due to the re-
moval of the backbone reduces the number of ground states
of this component by a factor of two.

For the enumeration of all ground states, we use a variant
of the branch-and-bound algorithm without leaf removal.
Also we allow at each node fork=Xmin−X additional cov-
ered vertices instead ofk=Xmin−X−1, whereXmin is the size
of a minimal vertex cover for the current component, which
is known from the first step. We store all covers which have
the sizeXmin. When the algorithm terminates, all minimum
covers are stored.

To summarize, the general outline of the algorithm is as
follows.

begin
split the graph into connected components;
for each component
begin

find a single solutionusing leaf removal
and branch-and-bound;

determine the backbone vertices;
remove all backbone vertices;
split the graph into connected components;
for each component
begin

enumerateall solutionsusing
branch-and-bound;

end
end

end
The complete set of all solutions contains all possible

combinations of covers for all components. Since the trees
contribute only a trivial background to the solution land-
scape, we analyze in the following very often only the largest
component of each graph.

The complete algorithm can findone minimal VC for
graphs with sizes betweenN<200 (for c=6) and N<2000
(for c=3). The number of solutions grows strongly exponen-
tial, so enumeration of all ground states is possible only up to
N<100.

B. Monte Carlo algorithm

For larger graphs, we apply a parallel tempering(PT)
[42,43] Monte Carlo(MC) [44] algorithm to sample configu-
rations.

The basic approach is that we simulate the behavior of an
equivalent system, thehard-core lattice gas[24]. The graph
corresponds to a lattice with edges of length one. Each vertex
corresponds to a site of the lattice that can be occupied by a
hard sphere with radius one. The statescovered or uncovered
of the vertices correspond to the two possibilitiesnot occu-
pied or occupiedin this order. Hence, for a given coverU of

FIG. 1. Identifying the backbone: A vertexi is fixed to be un-
covered by replacing it with new vertices, one for each edge(note:
a leaf of the original graph can never belong to the covered back-
bone). i belongs to the covered backbone, iff the minimal VCs of
the new graph are larger than in the original one.

FIG. 2. Median number of ground states of the largest compo-
nent for different values ofc. The circles represent values before
removal of the backbone, the triangles after the removal(error bars
are at most of symbol size). The smallerc the larger is the speedup,
which is due to reduced size of the largest component.
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the graph, we assign anoccupation number xi to each site of
the lattice:

xi ª H0 if corresponding vertexi P U,

1 if corresponding vertexi ¹ U.
J s1d

The condition, that in a VC for each edge at least one of
its vertices has to be covered, implies for edges on the lattice
that at most one of the two endpoints can have the occupa-
tion number 1. In other words, if a sphere is put on sitei then
all sites that are connected toi by an edge cannot be occu-
pied. A given assignment to the occupation numbers is thus a
VC, if the characteristic function

xsxWd = p
hi,jjPE

s1 − xixjd s2d

equals one. We can control the number of spheres by apply-
ing the grand-canonical formalism. The grand-canonical par-
tition function J is given by

J = o
xi=0,1

expsm o xidxsxWd, s3d

where m is the chemical potential. Configurations with a
larger number of spheres get an exponential greater weight.
In the largem-limit the sum is dominated by the configura-
tions where the largest number of hard spheres is put on the
lattice. These configurations correspond to minimal VCs.

The MC moves[24] which sample Eq.(3) consist in se-
lecting a vertex randomly and performing with probability
p=0.5 either a move(M) or an exchange(E) step. For de-
tails, see the algorithm in Table I.

The MC simulation is performed within a PT[45] frame-
work. Its idea is that different copies of the system(for the
same graph) are simulated each at a different value of the
chemical potentialm. At lower values ofm spheres can be
more easily removed than at higher ones, so the system can
overcome larger energy barriers. At high values ofm the
system equilibrates to a local minimum. The basic PT step is
to perform exchanges of the configuration for neighboring
values of the chemical potential in a way such that globally
detailed balance is ensured, for details, see Table I.

In our simulation we usen=26 values betweenm=1 and
m=12. The simulations run forNMC=106 MC sweeps. 500
configurations are saved for a valuem=9. At this value ofm
most of the sampled states have the ground state energy; cf.
Fig. 3. For the system sizes that are tractable by the exact
algorithm(cf. beginning of subsection) we additionally veri-
fied that parallel tempering really finds ground states.

III. CLUSTERING METHODS

A. Clustering using hamming distance

Our first naive approach for analyzing the ground-state
structure is based on the hamming distance between different
solutions. The hamming distancedhamshxWsadj ,hxWsbdjd;dab of
two solutions is the number vertices in which the two con-
figurations differ. If for two optimal solutions their hamming
distance is minimal, i.e.,dhamshxWsadj ,hxWsbdjd=2, we will call
them neighbors. Since for a given realization all ground

states have the same energy, neighboring states differ only in
two verticesi and j which are linked by an edge. In other
words, one can get a neighboring statexWsad of a given ground
state by choosing a covered vertexi which has the property
that all but one vertexj of the adjacent vertices ofi are
covered. The state withi uncovered andj covered is a neigh-

TABLE I. Parallel tempering Monte Carlo algorithm.NMC de-
notes the number of MC sweeps per copy;n denotes the number of
different copies.

begin

initialize configurationhxi
s1dj . . .hxi

sndj randomly

for t=1. . .NMC do

begin

for each copyk=1. . .n do

do N times

begin{perform one MC step}

choose a random vertexv
with probability 1/2 do step(M) or (E)

(M) if v is covered and has exactly one

uncovered neighborw then

uncoverv and coverw

elseto nothing

(E) if v is uncoveredthen

cover it with prop.e−mi

else ifv and all its neighbors

are coveredthen

uncoverv
end

for k=1. . .n−1

begin{perform PT moves}

setDEk=smk−mk+1dsoixi
skd−oixi

sk+1dd
with prop. exp(−minsDEi ,0d)

exchangekxi
skdl↔ kxi

sk+1dl
end

end

end

FIG. 3. Average sizex of the vertex cover for different values of
the chemical potentialmsN=64000d. In the large-m limit x ap-
proaches the average sizexc of the minimal vertex cover.
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boring ground state ofxWsad. If we think of covering marksput
on each covered vertex, then this is equivalent to moving a
covering mark along an edge to an adjacent vertex. Step(M)
of the MC algorithm above exactly corresponds to this move.

We define aclusterC as maximal set of ground states, that
can be reached by repeatedly applying the above procedure.
Similar definitions of clusters have been used, e.g., for the
analysis of random p-XOR-SAT[34] or finite-dimensional
spin glasses[46]. States which belong to different clusters
are separated by a hamming distance of at least 4. In the
Appendix we will show that for a graph, which is a tree, the
ground-state structure always consists of exactly one single
cluster.

To decide that two arbitrary ground statesxWsad andxWsbd do
not belong to the same cluster, one needs to calculate the
complete clusterxWsad (or xWsbd) belongs to. Hence the cluster-
ing is very expensive.

The naive algorithm is as follows.
(1) Identify the giant component of the graph[we ignore

the Os1d components since they do not influence the cluster
structure; cf. Sec. I].

(2) Calculate all ground statesxWsad as described in Sec. II.
(3) Cluster the ground-state configurations:

begin
Sªset of all ground states
i =0 {number of so far detected clusters}
while Snot emptydo
begin

i = i +1
remove an elementxWsad from S
set clusterCi =sxWsadd
set pointerxWsbd to first element ofCi
while xWsbd kl NULL do
begin

for all elementsxWsgd of S
if dhamsxWsbd ,xWsgdd=2 then
begin

removexWsgd from S
put xWsgd at the end ofCi

end
set pointerxWsbd to next element ofCi
or to NULL if there is no more

end
end

end
The crucial point is that one really needs to consider all

ground states and not just a sample. The algorithm is qua-
dratic in the number of ground statesxWsad, which makes the
method applicable to system sizes up toN<70, depending
on the connectivityc. For every value ofN we sampled 104

realizations. The average number of clusters as function of
connectivity is shown as circles in Fig. 4. We mainly use this
naive method to judge the validity of its extension which will
be described in the next Sec. III B. Forc,e the number of
clusters remains close to one. For larger values ofc the num-
ber of clusters increases with system size. Apparently the
increase is compatible with a logarithmic growth as a func-
tion of system size, see discussion in the next section.

B. Cluster detection using sampled states

In this section we will show, how one can identify clusters
when only a small fraction of the solution space has been
sampled, as obtained by using Monte Carlo methods such as
parallel tempering. We start in one of the configurationsxWsad

and follow a local exchange dynamics which does not
change the energy, i.e., the size of the cover. If we can reach
another configurationxWsbd thenxWsad andxWsbd are in the same
cluster, according to the cluster definition above.

Let us compare two ground statesxWsad andxWsbd. We do not
need to consider vertices that are already covered in both
states. Letcovsad be the subset of vertices ofG that are cov-
ered in statexWsad but uncovered in statexWsbd. In the same way
we definecovsbd. Since all ground states have the same num-
ber of covered vertices both sets must have the same size.
Moreover, all vertices incovsad must be neighbors of vertices
in covsbd, otherwise the configurations would not be vertex
covers. So the subgraphG8 of G which contains all vertices
in covsad and covsbd and all the edges fromG running be-
tween these vertices is a bipartite graph.(See Fig. 5.)

The following algorithm moves cover marks on the graph
G8 to find out whetherxWsad andxWsbd belong to the same clus-
ter.

(1) Select a vertexv in G8 which is covered in statexWsad

and which has exactly one neighborw in G8 (i.e. w is cov-
ered in statexWsbd); if no suchv exists: stop.

(2) Removev andw from G8, i.e., setG8ªG8 \ hvj \ hwj.
(3) Go to step(1).

FIG. 4. Average number of clusters in the solution space of
the largest component as function of system size. The circle sym-
bols for small system sizes have been obtained by clustering com-
plete sets of ground states. For large systems we sampled ground
states with a Monte Carlo algorithm at large but finite chemical
potentialm.

FIG. 5. Can one reach stateb from statea just by moving one
cover mark at a time, never uncovering any edge? The algorithm
tries to find the answer by looking at the bipartite graph induced by
all nodes that are covered either ina or in b (but not in both).
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Each pair of vertices taken out in step(2) corresponds to
moving a covering mark along the edge connectingv andw.
Since w is always the only uncovered neighbor ofv the
algorithm only visits states that are ground states. Note that
each covering mark is moved at most once, for this reason,
we call this procedure “ballistic search”[47]. This method
has been already applied to study the ground-state structure
of finite-dimensional spin glasses[46].

If the algorithm stops withG8=0” we have found a path in
configuration space between statesa and b that only goes
through ground states and we know for sure thata andb are
in the same cluster.

On the other hand, if such a path exists where each cov-
ering mark has to be moved at most once, then the algorithm
is guaranteed to find it[48]. We prove this by contradiction.
The main reason is that for two given statesa and b the
cover mark on any vertexv is moved to the same vertexw in
all possible paths, i.e., the individual moves ae unique, only
the order in which they are done can differ between paths.

Suppose the opposite would be true, i.e., there exists a
pathP in which the mark on vertexv is moved to vertexw
and a pathP8 in which it is moved to vertexw8. Take the first
vertexv in P for which this is true. The moves for all cover
marks moved prior tov in P are the same inP8. So one can
do all these moves, afterwardsv has only one uncovered
neighbor, namelyw. Next, move all cover marks inP8,
which have not yet been moved. Noww will be covered, too.
But then vertexv and all its neighbors will be covered,
which is impossible in a ground state. Contradiction, there
cannot be two such paths.

Hence, if the algorithm stops in step(a) with G8Þ0” , then
no such path exists where each covering mark is moved at
most once. This means that eitherxWsad andxWsbd are in different
clusters or that they are connected by a path such that a
covering mark has to be moved at least twice. To exclude
that the clustering is wrong because some configurations are
connected by paths where a clustering mark is moved more
than once, we compare all configurations pairwise with each
other. This means, we use the transitivity of the cluster to
exclude that two configurations are mistaken to be in differ-
ent clusters although they are in the same[47]. And indeed
we have sometimes observed that for three configurationsa,
b, g, paths are found froma to b and fromb to g, but not
from a to g.

For each realization we sample with parallel tempering
500 configurations during a time of 106 MC steps as de-
scribed in Sec. II B. This number of configurations is far
high enough to ensure that never two configurations belong-
ing actually to the same cluster are mistaken to be in differ-
ent clusters. On the other hand, it might happen that for some
(small) clusters no configurations are sampled. We have
tested this explicitly by calculating the number of clusters as
a function of the number of configurations included in the
clustering, see Fig. 6. One can see that for small connectivi-
ties the number of clusters is more or less independent on the
size of the sample, while for larger values ofc and larger
system sizes, the number of clusters increases slightly with
the sample size. This means that in Fig. 4, where we show
the average number of clusters we find for different connec-
tivities (for the largest sample size), we have basically a

lower bound for the real average number of clusters. The
main result is unaffected by this sample-size effect: For small
connectivitiesc the number of clusters is close to one, inde-
pendent of the system size, and for large values ofc the
number of clusters grows. The results are compatible with
the change appearing nearc=e, but we cannot determine the
value of the change precisely from our data. Also we cannot
be sure that the growth of the number of clusters is only
logarithmically with system size. But it seems likely that the
number of clusters grows slower than exponentially with
system size, since forc=4, N=800 we find on average less
than three clusters. Hence, this is different from the 1-RSB
phase of the satisfiability problem[16,17,33]. This slow
growth is compatible with the analytical result that forc
.e the 1-RSB solution is not the correct one[25], hence a
higher level of RSB is to be expected.

C. Extensive eigenvalues and the number of clusters

In this section we will use a completely different method
to analyze the structure of the solution space. Sinovaet al.
[11,12] describe a tool for counting independent pure states
in Ising spin glasses. Here we summarize the basic aspects of
their method. Their main idea is to study the spectral prop-
erties of the spin-spin correlation matrixkSiSjl;Cij wherekl
indicates the thermal average. This matrix is semidefinite and
sincekSiSil=1∀ i it has traceN. For spin-glasses above the
ordering temperatureTc, all eigenvalues are of order one.
Below Tc, long-range order appears. If there is a single pair
of pure states, then in the low temperature limitT→0, Cij
→ ±1, C has one eigenvalue which approachesN asT→0,
and the rest of the eigenvalues decays to zero with a power
law in N. So one can detect the presence of long range order
just from analyzing the spectrum ofCij .

In the frozen, disordered phase, the phase space breaks up
into many pairs of pure states. They are characterized by
their clustering property[4], which we will explain in more
detail in the next Sec. III D. Sinovaet al. argue that the

FIG. 6. Behavior of the number of detected clusters depending
on the number of sampled states for different values ofc. The
crossed symbols are forc=4, circles forc=3, and small bars for
c=2. For c,e the numbers are confined within error bars; forc
.e only a fraction of the clusters are detected. The number of
detected clusters is still increasing with the number of sampled
states.
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number number of extensive eigenvalues ofCij corresponds
to the number of independent pure states of the system. This
makes it possible to detect RSB, which must be present, if
the correlation matrix has more than one extensive eigen-
value. Note that this way of looking at the phase-space struc-
ture is different from looking at the clusters: The number of
clusters may grow exponentially with the system size, while
the number of independent pure states can never be larger
thanN, since aN3N matrix has onlyN eigenvalues.

We apply this method directly to the vertex-cover prob-
lem. For every realization we calculateCij averaged over the
configurations sampled by parallel tempering withSi =1 if
vertexi is covered andSi =−1 if it is uncovered. We calculate
the three largest eigenvalues and average over 100 to 400
realizations, depending on the system size.

In Fig. 7 we show our results for different values ofc and
N at m=9. As one can see in the next section, thism is large
enough to allow for a nontrivial behavior. We plot the nor-
malized value of the second and third largest eigenvalue as a
function of system size. As expected forc=1 andc=2 the
system is found to be in the replica symmetric phase: There
is only one extensive eigenvalue, the second and the third
decay with a power ofN.

For very largec the behavior is different. The second
largest eigenvalue reaches a plateau value aroundN
=200–300. The closer the system is to thec=e the later this
plateau is reached. Especially forc=3 the behavior is not yet
clear from the reachable system sizes. The same applies to
the third eigenvalue, although one can see a difference be-
tween the largest and the smallest values ofc. However, with
the reachable system sizes we cannot rule out the possibility

that the third eigenvalue slowly decays for all connectivities.
Supposing that the behavior offl2g does not change again

for largeN, we conclude that RSB must be present starting
from a value of 2,c,4. Please note that we cannot distin-
guish between 1-RSB and higher order of RSB from this
method. For this reason, we have applied another method
described in the next section.

D. Hierarchical clustering approach

In this last subsection, we will use a clustering approach
that organizes the states in a hierarchical structure. Such
clustering methods[49] are widely used in general data
analysis, sometimes also used in statistical mechanics; see,
e.g., Refs.[13,50,51]. The methods all start by assuming that
all states belong to separate clusters. Similarity between clus-
ters (and states) is defined by a measure calledproximity
matrix da,b. At each step two very similar clusters are joined
and so a hierarchical tree of clusters is formed.

A valid hierarchical clustering implies a true ultrametric
structure[6]. Such a structure is a very important property of
the Parisi-RSB solution[3] of the mean-field SK model: All
triples sxWsad ,xWsbd ,xWsddd of ground states form isosceles tri-
angles with the third side shorter or equal to the other two
sides.

We will try to detect a hierarchical structure in the phase
space of finite-size instances of VC. As proximity measure
for two initial clusters, each containing only a single state,
we naturally choose the hamming distance between these
two states as defined in Sec. III A, divided by the number of
vertices. At each step the two clustersCa and Cb with the
minimal distance are merged to form a new clusterCg. Then
the proximity matrix is updated by deleting the distances
involving Ca and Cb and adding the distances betweenCg

and all other clustersCd in the system. So we need to extend
the proximity measure to clusters with more than one state,
based on some suitable update rule which is usually a func-
tion of the distancesda,b, da,d, anddb,d.

The choice of this function is a widely discussed field
since it can have a great impact on the clustering obtained
[49]. It should represent the natural organization present in
the data and not some artificial structure induced from the
choice of the update rule. Here we will useWard’s method
(also calledminimum variance method) [52]. The distance
between the merged clusterCg and some other clusterCd is
given by

dg,d =
sna + nddda,d + snb + ndddb,d − sna + nbdda,b

na + nb + nd

, s4d

wherena, nb, nd are the number of elements in clusterCa,
Cb, Cd, respectively. Heuristically Ward’s method seems to
outperform other update rules. The choice guarantees that at
each step the two clusters to be merged are chosen in a way
that the variance inside each cluster summed over all clusters
increases by the minimal possible amount.

The output of the clustering algorithm can be represented
as a dendogram. This is a tree with the ground states as
leaves and each node representing one of the clusters at dif-

FIG. 7. Scaling of the second largest(top) and third largest
(bottom) eigenvalue ofCij .
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ferent levels of hierarchy; see the bottom half of the ex-
amples in Fig. 8.

Note that Ward’s algorithm is able to cluster any data,
which can be always displayed as a dendogram, even if no
structure is presented. Hence, one has to perform additional
checks. A visual check is to plot the hamming distances as a
matrix where the rows and columns are ordered according to
the dendogram. This is shown in the top half of Fig. 8.
Darker colors correspond to smaller distances. The figure
shows three different realizations: For small values ofm no
cluster structure is present. For small values ofc,e and
large values ofm, the system is in the RS phase, only a single
cluster is present. For larger values ofc and high values ofm,
the ordering of the states obtained by the clustering algo-
rithm reveals an underlying structure which can be seen in
the right part of the figure. One can see that the states form
groups where the hamming distance between the members is
small (dark colors) while the distance to other states is large.
Thus, our results are compatible with clustering being
present for realizations withc.e. If you look carefully you
can see more structure inside the clusters. Multiple levels of
clustering indicate higher levels of RSB which we expect to
be present for these values ofc [24,25].

To check more quantitatively whether the cluster structure
detected by the algorithm is actually present in the data we
evaluate thecophenetic correlation coefficient

K ; fd ·dcgG − fdgfdcgG, s5d

wheref. . .gG denotes the average over the disorder. This co-
efficient measures the correlation between the original dis-
tanced of two states and theircophenetic distance dc im-
posed by the clustering.dc is measured on the dendogram as
the distance given by Eq.(4) of the two largest clusters that
contain only one of the states.

The results of this test are shown in Fig. 9. The averages
are over all samples generated with parallel tempering(cf.
Sec. II B). As one sees, there is no correlation for small val-
ues of c. This is as expected, because forc,e no cluster

FIG. 8. (color online) Sample dendograms of 100 ground states for a graph with 400 vertices. Darker colors correspond to closer
distances. The left one is atc=2 andm=9, in the i.e., in the RS phase. There is no structure present. The same is true forc=6 andm=2. For
c=6 andm=9 the dendogram provides a structure, where the ground states form clusters. The careful reader may recognize a second or third
level of clustering in this right picture.

FIG. 9. The correlation between hamming distance and cophe-
netic distance measured on the dendogram increases withc.
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structure is present.K increases with increasing magnitude
of the connectivity. In particular, the different curves forN
.100 cross nearc=e. For small values ofc, K decreases
with growing system size, while for large values ofc, K
increases. This indicates again that aroundc=e a hierarchical
organization of the VC solution space sets in. However, for
larger values ofc the average correlation seems to converge
to a value close toK<0.8. This means that the clustering
imposed by Ward’s method does not fully represent the struc-
ture inherent to minimal VCs.

IV. CONCLUSION

In our paper we analyzed the ground-state properties of
the vertex-cover problem. Especially we focussed on the
phenomenon of clustering. We found that for connectivities
c,e basically only one ground-state cluster is present. For
larger connectivities the number of numerically detected
clusters increases, apparently logarithmically. This is com-
patible with the fact that in analytical calculations, forc.e,
the replica-symmetric solution is not longer valid and the
level of RSB seems to be higher than 1-RSB. More evidence
for the appearance of RSB was found by analyzing the spec-
tral properties of the vertex-vertex correlation function: For
c.e two or more eigenvalues are extensive which can only
be the case, if RSB is present.

With a clustering approach using Ward’s algorithm, we
tried to detect directly a hierarchical structure in the ground
states. We find qualitatively higher levels of clustering
present in the ground-state structure for high values ofc.
This would indicate higher level of replica symmetry break-
ing. Also, forc.e, the clustering imposed by the algorithms
becomes more and more compatible with the structuring of
the state space.

In summary, the different algorithms are able to find indi-
cations for RSB in the solution landscape of combinatorial
optimization problems. Note that the presence of RSB does
not necessarily mean that it is the same type of RSB, which
is found in the solution of the SK model. The details of the
organization of the solution space, e.g., the extent of ultra-
metricity, can be different. This can be seen in the conver-
gence of the cophenetic correlation coefficient to a value
apparently smaller than one.

From our results, which support the previous analytical
findings, we conclude it seems promising to apply the meth-
ods to other more complicated ensembles of VC or to other
optimization problems, where less analytical results are
available, in order to understand their behavior better.
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APPENDIX: THE SOLUTION SPACE OF VERTEX
COVER ON A TREE CONSISTS ONLY

OF A SINGLE CLUSTER

In Sec. III A we defined a clusterC as a maximal set of
ground states such that for each pairxWsad, xWsbdPC there exists
a seriessxWsdiddi=0. . .k of ground states withxWsd0d=xWsad andxWsdkd

=xWsbd and dhamsxWsdld ,xWsdl+1dd=2, i.e., minimal hamming dis-
tance between consecutive elements of the series. In this ap-
pendix we will show, that for trees there can be only one
cluster. The proof will be by induction on the numberN of
vertices in the tree. ForN=2 there are two ground states,
which have hamming distance 2.

Suppose we have proven the statement forN and consider
a graph of sizeN+1. First note that there is at least one
ground statexWsdd with a vertexv covered that is a neighbor of
a leafv0. Such a ground state can be constructed, e.g., using
leaf removal. We show separately, thatxWsdd is in the same
cluster as all ground stateshxWsd8dj with v covered and withv
uncovered.(See Fig. 10.)

Let xWsd8d be a ground state withv covered. If we delete
vertex v from the tree, then it falls apart into components
G1, . . . ,Gk wherek is the connectivity ofv. xWsdd induces a
cover on eachGi which is also a minimal cover on each
subgraph, since we started with a minimal cover onG. The
same is true forxWsd8d. Each of the subgraphs has size smaller
thanN, so by induction we can construct a series fromxWsdd to
xWsd8d separately on each subgraph, hence both ground states
are in the same cluster.

Now consider a ground statexWsd8d that hasv uncovered.
Again we consider the subgraphs one gets by removingv
from the graph. LetXi be the number of covered vertices in
the cover induced fromxWsdd on the subgraphGi, analogues let
X8i be the number of covered vertices in the cover induced
from xWsd8d. SincexWsdd andxWsd8d both are ground states we have
oiXi +1=oiX8i which is equivalent to 1=oisX8i −Xid. All
summands on the right side must be non-negative, otherwise
xWsdd would not be a ground state. So there exists exactly one
subgraphGj with Xi8−Xi =di,j. This subgraph must be the leaf
v0. For i Þ j the covers induced byxWsd8d on Gi must be ground
states of the subgraph, sinceXi8=Xi. So by induction we can
construct a series fromxWsdd to xWsd8d, again separately on each
subgraphGi for i Þ j and on the subgraphhvjø hv0j, hence
both ground states are in the same cluster.

Together we showed that all ground states are in the same
cluster asxWsdd, thus there can only be a single cluster of
ground states.

FIG. 10. If there is a ground state with vertexv uncovered
(right), then all subgraphs induced by deletingv must have a mini-
mal vertex cover with the same size as they have in a ground state
with vertexv covered(left).
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